Identifiant
Mot de passe
Loading...
Mot de passe oublié ?
Je m'inscris ! (gratuit)
Forums
Tutoriels
FAQ
Blogs
Chat
Newsletter
Emploi
Études
Droit
Club
DI/DSI Solutions d'entreprise
DI/DSI Solutions d'entreprise
Big Data
BPM
Business Intelligence
Data Science
ERP / PGI
CRM
SAS
SAP
Sécurité
Droit informatique et entreprise
OnlyOffice
Cloud
Cloud Computing
Oracle
Azure
IBM Cloud
IA
Intelligence artificielle
ALM
ALM
Agile
Merise
UML
Microsoft
Microsoft
.NET
Microsoft Office
Visual Studio
Windows
ASP.NET
TypeScript
C#
VB.NET
Azure
Java
Java
Java Web
Spring
Android
Eclipse
NetBeans
Dév. Web
Développement et hébergement Web
AJAX
Apache
ASP
CSS
Dart
Flash / Flex
JavaScript
NodeJS
PHP
Ruby & Rails
TypeScript
Web sémantique
Webmarketing
(X)HTML
EDI
EDI
4D
Delphi
Eclipse
JetBrains
LabVIEW
NetBeans
MATLAB
Scilab
Visual Studio
WinDev
Visual Basic 6
Lazarus
Qt Creator
Programmation
Programmation
Débuter - Algorithmique
2D - 3D - Jeux
Assembleur
C
C++
C#
D
Go
Kotlin
Objective C
Pascal
Perl
Python
Rust
Swift
Qt
XML
Autres
SGBD
SGBD & SQL
4D
Access
Big Data
Data Science
DB2
Firebird
InterBase
MySQL
NoSQL
PostgreSQL
Oracle
Sybase
SQL-Server
MongoDB
Office
Microsoft Office
Access
Excel
Word
Outlook
PowerPoint
SharePoint
Microsoft Project
OpenOffice & LibreOffice
OnlyOffice
Mobiles
Mobiles
Android
iOS
Systèmes
Systèmes
Windows
Linux
Arduino
Hardware
HPC
Mac
Raspberry Pi
Réseau
Green IT
Sécurité
Systèmes embarqués
Virtualisation
Programmation
Algorithmique
2D-3D-Jeux
Assembleur
C
C++
C#
D
Go
Kotlin
Objective C
Pascal
Perl
Python
Rust
Swift
Qt
XML
Autres
FORUM PYTHON
F.A.Q PYTHON
EXERCICES PYTHON
TUTORIELS PYTHON
SOURCES PYTHON
OUTILS PYTHON
LIVRES PYTHON
PyQt
Contents
numarray
User's Manual
Previous:
Legal Notice
Up:
numarray User's Manual
Next:
1 Numerical Python
Contents
General
Front Matter
Legal Notice
Special license for package numarray.ma
Disclaimer
1 Numerical Python
1. Introduction
1.1 Where to get information and code
1.2 Acknowledgments
2. Installing numarray
2.1 Testing the Python installation
2.2 Testing the Numarray Python Extension Installation
2.3 Installing numarray
2.3.1 Installing on Unix, Linux, and Mac OSX
2.3.2 Installing on Windows
2.4 At the SourceForge...
3. High-Level Overview
3.1 Numarray Objects
3.2 Universal Functions
3.3 Convenience Functions
3.4 Differences between numarray and Numeric.
4. Array Basics
4.1 Basics
4.2 Creating arrays from scratch
4.2.1 array() and types
4.2.2 Multidimensional Arrays
4.3 Creating arrays with values specified ``on-the-fly''
4.3.1 Creating an array from a function
4.4 Coercion and Casting
4.4.1 Automatic Coercions and Binary Operations
4.4.2 The type value table
4.4.3 Long: the platform relative type
4.4.4 Deliberate casts (potentially down)
4.5 Operating on Arrays
4.5.1 Simple operations
4.5.2 In-place operations
5. Array Indexing
5.1 Getting and Setting array values
5.2 Slicing Arrays
5.3 Pseudo Indices
5.4 Index Arrays
6. Intermediate Topics
6.1 Rank-0 Arrays
6.2 Exception Handling
6.3 IEEE-754 Not a Number (NAN) and Infinity
7. Ufuncs
7.1 What are Ufuncs?
7.1.1 Ufuncs can take output arguments
7.1.2 Ufuncs have special methods
7.1.3 Ufuncs always return new arrays
7.2 Which are the Ufuncs?
7.2.1 Unary Mathematical Ufuncs
7.2.2 Binary Mathematical Ufuncs
7.2.3 Logical and bitwise ufuncs
7.2.4 Comparisons
7.2.5 Ufunc shorthands
7.3 Writing your own ufuncs!
7.3.1 Runtime components of a ufunc
7.3.2 Source components of a ufunc
7.3.3 Ufunc code generation
7.3.4 Type signatures and signature ordering
7.3.5 Forms
7.3.6 Ufunc Generation Example
8. Array Functions
9. Array Methods
10. Array Attributes
11. Character Array
11.1 Introduction
11.2 Character array stripping, padding, and truncation
11.3 Character array functions
11.4 Character array methods
12. Record Array
12.1 Introduction
12.2 Record array functions
12.3 Record array methods
12.4 Record object
13. Object Array
13.1 Introduction
13.2 Object array functions
13.3 Object array methods
14. C extension API
14.1 Numarray extension basics
14.1.1 Include libnumarray.h
14.1.2 Alternate include method
14.1.3 Import libnumarray
14.1.4 Writing a simple setup.py file for a numarray extension
14.2 Fundamental data structures
14.2.1 Numarray Numerical Data Types
14.2.2 NumarrayType
14.2.3 PyArray_Descr
14.2.4 PyArrayObject
14.2.5 Flag Bits
14.3 Numeric simulation API
14.3.1 Simulation Functions
14.3.2 Numeric Compatible Functions
14.3.3 Unsupported Numeric Features
14.4 High-level API
14.4.1 High-level functions
14.4.2 Behaved-ness Requirements
14.4.3 Example
14.5 Element-wise API
14.5.1 Element-wise functions
14.5.2 Example
14.6 One-dimensional API
14.7 New numarray functions
2 Extension modules
15. Convolution
15.1 Convolution functions
15.2 Global constants
16. Fast-Fourier-Transform
16.1 Installation
16.1.1 Installation using FFTPACK
16.2 FFT Python Interface
16.3 fftpack Python Interface
17. Linear Algebra
17.1 Installation
17.1.1 Installation using LAPACK
17.2 Python Interface
18. Masked Arrays
18.1 What is a masked array?
18.2 Using numarray.ma
18.3 Class MaskedArray
18.3.1 Attributes of masked arrays
18.3.2 Methods on masked arrays
18.3.3 Constructing masked arrays
18.3.4 What are masks?
18.3.5 Working with masks
18.3.6 Operations
18.3.7 Copying or not?
18.3.8 Behaviors
18.3.9 Indexing and Slicing
18.3.10 Indexing in assignments
18.3.11 Operations that produce a scalar result
18.3.12 Assignment to elements and slices
18.4 MaskedArray Attributes
18.5 MaskedArray Functions
18.5.1 Unary functions
18.5.2 Binary functions
18.5.3 Comparison operators
18.5.4 Logical operators
18.5.5 Special array operators
18.5.6 Controlling the size of the string representations
18.6 Helper classes
18.6.1 The constant masked
18.6.2 The constant masked_print_option
18.7 Examples of Using numarray.ma
18.7.1 Data with a given value representing missing data
18.7.2 Filling in the missing data
18.7.3 Numerical operations
18.7.4 Seeing the mask
18.7.5 Filling it your way
18.7.6 Ignoring extreme values
18.7.7 Averaging an entire multidimensional array
19. Mlab
19.1 Matlab(tm) compatible functions
20. Random Numbers
20.1 General functions
20.2 Special random number distributions
20.2.1 Random floating point number distributions
20.2.2 Random integer number distributions
20.3 Examples
21. Multi-dimensional image processing
21.1 Introduction
21.2 Properties shared by all functions
21.3 Filter functions
21.3.1 Correlation and convolution
21.3.2 Smoothing filters
21.3.3 Filters based on order statistics
21.3.4 Derivatives
21.3.5 Generic filter functions
21.4 Fourier domain filters
21.5 Interpolation functions
21.5.1 Spline pre-filters
21.5.2 Interpolation functions
21.6 Binary morphology
21.7 Grey-scale morphology
21.8 Distance transforms
21.9 Segmentation and labeling
21.10 Object measurements
21.11 Extending nd_image in C
21.11.1 C callback functions
21.11.2 Functions that support C callback functions
22. Memory Mapping
22.1 Introduction
22.2 Opening a Memmap
22.3 Slicing a Memmap
22.4 Creating an array from a MemmapSlice
22.5 Resizing a MemmapSlice
22.6 Forcing file updates and closing the Memmap
22.7 numarray.memmap functions
22.8 Memmap methods
22.9 MemmapSlice methods
Appendix
A. Glossary
Index
About this document ...
numarray
User's Manual
Previous:
Legal Notice
Up:
numarray User's Manual
Next:
1 Numerical Python
Release 1.5, documentation updated on November 2, 2005.
Send comments to the
NumArray community
.