Vous devez avoir un compte Developpez.com et être connecté pour pouvoir participer aux discussions.

Identifiez-vous
Identifiant
Mot de passe
Mot de passe oublié ?
Créer un compte

Vous n'avez pas encore de compte Developpez.com ? L'inscription est gratuite et ne vous prendra que quelques instants !

Je m'inscris !

Developpez.com

Python

Choisissez la catégorie, puis la rubrique :

operator — Standard operators as functions — Python v3.0 documentation

operator — Standard operators as functions¶

The operator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python. For example, operator.add(x, y) is equivalent to the expression x+y. The function names are those used for special class methods; variants without leading and trailing __ are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations, sequence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they support:

operator.lt(a, b)¶
operator.le(a, b)¶
operator.eq(a, b)¶
operator.ne(a, b)¶
operator.ge(a, b)¶
operator.gt(a, b)¶
operator.__lt__(a, b)¶
operator.__le__(a, b)¶
operator.__eq__(a, b)¶
operator.__ne__(a, b)¶
operator.__ge__(a, b)¶
operator.__gt__(a, b)¶
Perform “rich comparisons” between a and b. Specifically, lt(a, b) is equivalent to a < b, le(a, b) is equivalent to a <= b, eq(a, b) is equivalent to a == b, ne(a, b) is equivalent to a != b, gt(a, b) is equivalent to a > b and ge(a, b) is equivalent to a >= b. Note that unlike the built-in cmp(), these functions can return any value, which may or may not be interpretable as a Boolean value. See Comparisons for more information about rich comparisons.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean operations:

operator.not_(obj)¶
operator.__not__(obj)¶
Return the outcome of not obj. (Note that there is no __not__() method for object instances; only the interpreter core defines this operation. The result is affected by the __bool__() and __len__() methods.)
operator.truth(obj)¶
Return True if obj is true, and False otherwise. This is equivalent to using the bool constructor.
operator.is_(a, b)¶
Return a is b. Tests object identity.
operator.is_not(a, b)¶
Return a is not b. Tests object identity.

The mathematical and bitwise operations are the most numerous:

operator.abs(obj)¶
operator.__abs__(obj)¶
Return the absolute value of obj.
operator.add(a, b)¶
operator.__add__(a, b)¶
Return a + b, for a and b numbers.
operator.and_(a, b)¶
operator.__and__(a, b)¶
Return the bitwise and of a and b.
operator.floordiv(a, b)¶
operator.__floordiv__(a, b)¶
Return a // b.
operator.inv(obj)¶
operator.invert(obj)¶
operator.__inv__(obj)¶
operator.__invert__(obj)¶
Return the bitwise inverse of the number obj. This is equivalent to ~obj.
operator.lshift(a, b)¶
operator.__lshift__(a, b)¶
Return a shifted left by b.
operator.mod(a, b)¶
operator.__mod__(a, b)¶
Return a % b.
operator.mul(a, b)¶
operator.__mul__(a, b)¶
Return a * b, for a and b numbers.
operator.neg(obj)¶
operator.__neg__(obj)¶
Return obj negated.
operator.or_(a, b)¶
operator.__or__(a, b)¶
Return the bitwise or of a and b.
operator.pos(obj)¶
operator.__pos__(obj)¶
Return obj positive.
operator.pow(a, b)¶
operator.__pow__(a, b)¶
Return a ** b, for a and b numbers.
operator.rshift(a, b)¶
operator.__rshift__(a, b)¶
Return a shifted right by b.
operator.sub(a, b)¶
operator.__sub__(a, b)¶
Return a - b.
operator.truediv(a, b)¶
operator.__truediv__(a, b)¶
Return a / b where 2/3 is .66 rather than 0. This is also known as “true” division.
operator.xor(a, b)¶
operator.__xor__(a, b)¶
Return the bitwise exclusive or of a and b.
operator.index(a)¶
operator.__index__(a)¶
Return a converted to an integer. Equivalent to a.__index__().

Operations which work with sequences include:

operator.concat(a, b)¶
operator.__concat__(a, b)¶
Return a + b for a and b sequences.
operator.contains(a, b)¶
operator.__contains__(a, b)¶
Return the outcome of the test b in a. Note the reversed operands.
operator.countOf(a, b)¶
Return the number of occurrences of b in a.
operator.delitem(a, b)¶
operator.__delitem__(a, b)¶
Remove the value of a at index b.
operator.getitem(a, b)¶
operator.__getitem__(a, b)¶
Return the value of a at index b.
operator.indexOf(a, b)¶
Return the index of the first of occurrence of b in a.
operator.repeat(a, b)¶
operator.__repeat__(a, b)¶
Return a * b where a is a sequence and b is an integer.
operator.setitem(a, b, c)¶
operator.__setitem__(a, b, c)¶
Set the value of a at index b to c.

Many operations have an “in-place” version. The following functions provide a more primitive access to in-place operators than the usual syntax does; for example, the statement x += y is equivalent to x = operator.iadd(x, y). Another way to put it is to say that z = operator.iadd(x, y) is equivalent to the compound statement z = x; z += y.

operator.iadd(a, b)¶
operator.__iadd__(a, b)¶
a = iadd(a, b) is equivalent to a += b.
operator.iand(a, b)¶
operator.__iand__(a, b)¶
a = iand(a, b) is equivalent to a &= b.
operator.iconcat(a, b)¶
operator.__iconcat__(a, b)¶
a = iconcat(a, b) is equivalent to a += b for a and b sequences.
operator.ifloordiv(a, b)¶
operator.__ifloordiv__(a, b)¶
a = ifloordiv(a, b) is equivalent to a //= b.
operator.ilshift(a, b)¶
operator.__ilshift__(a, b)¶
a = ilshift(a, b) is equivalent to a <<= b.
operator.imod(a, b)¶
operator.__imod__(a, b)¶
a = imod(a, b) is equivalent to a %= b.
operator.imul(a, b)¶
operator.__imul__(a, b)¶
a = imul(a, b) is equivalent to a *= b.
operator.ior(a, b)¶
operator.__ior__(a, b)¶
a = ior(a, b) is equivalent to a |= b.
operator.ipow(a, b)¶
operator.__ipow__(a, b)¶
a = ipow(a, b) is equivalent to a **= b.
operator.irepeat(a, b)¶
operator.__irepeat__(a, b)¶
a = irepeat(a, b) is equivalent to a *= b where a is a sequence and b is an integer.
operator.irshift(a, b)¶
operator.__irshift__(a, b)¶
a = irshift(a, b) is equivalent to a >>= b.
operator.isub(a, b)¶
operator.__isub__(a, b)¶
a = isub(a, b) is equivalent to a -= b.
operator.itruediv(a, b)¶
operator.__itruediv__(a, b)¶
a = itruediv(a, b) is equivalent to a /= b.
operator.ixor(a, b)¶
operator.__ixor__(a, b)¶
a = ixor(a, b) is equivalent to a ^= b.

The operator module also defines a few predicates to test the type of objects.

Note

Be careful not to misinterpret the results of these functions; none have any measure of reliability with instance objects. For example:

>>> class C:
...     pass
...
>>> import operator
>>> obj = C()
>>> operator.isMappingType(obj)
True

Note

Since there are now abstract classes for collection types, you should write, for example, isinstance(obj, collections.Mapping) and isinstance(obj, collections.Sequence).

operator.isMappingType(obj)¶

Returns true if the object obj supports the mapping interface. This is true for dictionaries and all instance objects defining __getitem__().

Warning

There is no reliable way to test if an instance supports the complete mapping protocol since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

operator.isNumberType(obj)¶

Returns true if the object obj represents a number. This is true for all numeric types implemented in C.

Warning

There is no reliable way to test if an instance supports the complete numeric interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

operator.isSequenceType(obj)¶

Returns true if the object obj supports the sequence protocol. This returns true for all objects which define sequence methods in C, and for all instance objects defining __getitem__().

Warning

There is no reliable way to test if an instance supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

Example: Build a dictionary that maps the ordinals from 0 to 255 to their character equivalents.

>>> d = {}
>>> keys = range(256)
>>> vals = map(chr, keys)
>>> map(operator.setitem, [d]*len(keys), keys, vals)   # doctest: +SKIP

The operator module also defines tools for generalized attribute and item lookups. These are useful for making fast field extractors as arguments for map(), sorted(), itertools.groupby(), or other functions that expect a function argument.

operator.attrgetter(attr[, args...])¶

Return a callable object that fetches attr from its operand. If more than one attribute is requested, returns a tuple of attributes. After, f = attrgetter('name'), the call f(b) returns b.name. After, f = attrgetter('name', 'date'), the call f(b) returns (b.name, b.date).

The attribute names can also contain dots; after f = attrgetter('date.month'), the call f(b) returns b.date.month.

operator.itemgetter(item[, args...])¶

Return a callable object that fetches item from its operand using the operand’s __getitem__() method. If multiple items are specified, returns a tuple of lookup values. Equivalent to:

def itemgetter(*items):
    if len(items) == 1:
        item = items[0]
        def g(obj):
            return obj[item]
    else:
        def g(obj):
            return tuple(obj[item] for item in items)
    return g

The items can be any type accepted by the operand’s __getitem__() method. Dictionaries accept any hashable value. Lists, tuples, and strings accept an index or a slice:

>>> itemgetter(1)('ABCDEFG')
'B'
>>> itemgetter(1,3,5)('ABCDEFG')
('B', 'D', 'F')
>>> itemgetter(slice(2,None))('ABCDEFG')
'CDEFG'

Example of using itemgetter() to retrieve specific fields from a tuple record:

>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter(1)
>>> map(getcount, inventory)
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]
operator.methodcaller(name[, args...])¶
Return a callable object that calls the method name on its operand. If additional arguments and/or keyword arguments are given, they will be given to the method as well. After f = methodcaller('name'), the call f(b) returns b.name(). After f = methodcaller('name', 'foo', bar=1), the call f(b) returns b.name('foo', bar=1).

Mapping Operators to Functions¶

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the operator module.

Operation Syntax Function
Addition a + b add(a, b)
Concatenation seq1 + seq2 concat(seq1, seq2)
Containment Test obj in seq contains(seq, obj)
Division a / b truediv(a, b)
Division a // b floordiv(a, b)
Bitwise And a & b and_(a, b)
Bitwise Exclusive Or a ^ b xor(a, b)
Bitwise Inversion ~ a invert(a)
Bitwise Or a | b or_(a, b)
Exponentiation a ** b pow(a, b)
Identity a is b is_(a, b)
Identity a is not b is_not(a, b)
Indexed Assignment obj[k] = v setitem(obj, k, v)
Indexed Deletion del obj[k] delitem(obj, k)
Indexing obj[k] getitem(obj, k)
Left Shift a << b lshift(a, b)
Modulo a % b mod(a, b)
Multiplication a * b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not_(a)
Right Shift a >> b rshift(a, b)
Sequence Repetition seq * i repeat(seq, i)
String Formatting s % obj mod(s, obj)
Subtraction a - b sub(a, b)
Truth Test obj truth(obj)
Ordering a < b lt(a, b)
Ordering a <= b le(a, b)
Equality a == b eq(a, b)
Difference a != b ne(a, b)
Ordering a >= b ge(a, b)
Ordering a > b gt(a, b)
Contacter le responsable de la rubrique Python

Partenaire : Hébergement Web